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Quantum field theory in curved spacetime
Assignment 7 – June 16

Exercise 16: Euler-Heisenberg Lagrangian

Motivation: In semi-classical gravity, one tries to also compute the backreaction of the quantum fields on the

geometry. Here, we use QED as a toy model for this kind of computation, treating the electromagnetic field as a

classical background, just as one does in QFT in curved spacetime. If you think Schwinger, you’re exactly right

(this reference may be more understandable).

Note: This sheet is a longer one, but every single sub-exercise is doable with the hints that are
given. The derivation is pretty technical. If you want to skip a step, the result of the sub-exercise
is usually provided, so you can continue on with the next sub-exercise. The physical interpretation
of what we compute here is in sub-exercises (l) and (m). So if you’re first and foremost interested
in exploring the physics, concentrate on those.
The QED partition function on a flat background reads

Z =

Z
DAD ̄D eiSQED , (16.1)

with the QED action
SQED =

Z

x

⇥
�F +  ̄

�
i /D �m

�
 
⇤
. (16.2)

Here, F ⌘ Fµ⌫F µ⌫/4, where Fµ⌫ is the field-strength tensor of the gauge field Aµ. Besides, /D
denotes the covariant Dirac operator involving the covariant derivative

Dµ = @µ + ieAµ, (16.3)

and e and m are the charge and the mass of the (Grassmann-valued) fermion  , respectively.
We want to compute the one-loop effective Lagrangian for constant Fµ⌫ by integrating out the
fermion. For constant field strength, the effective Lagrangian is related to the effective action as

�[A] =

Z
d4xLe↵(F ) = V Le↵(F ), (16.4)

where V denotes the spacetime volume.

(a) At one-loop order, we can treat the electromagnetic field as a non-dynamical background,
and integrate over the fermion field. Define the effective action �[A] for the background field
A as

Z =

Z
DAei�[A]. (16.5)

Show that the resulting one-loop correction to the effective action reads

�(1)[A] = �i log det(i /D �m). (16.6)

This is the fermion determinant, encoding all one-loop corrections from virtual electrons in
the background field.
Hints:

https://journals.aps.org/pr/abstract/10.1103/PhysRev.82.664
https://arxiv.org/abs/1202.1557


• Gaussian path integrals are analogous to ordinary Gaussian integrals.
• Without gravity, constants in the effective action, even if they are infinite, do not

contribute to the physics, and can be neglected. You can do this in every part of this
sheet.

(b) As it is simpler to compute determinants of scalars, let’s rewrite the determinant. Show
that we can express the one-loop contribution to the effective action as

�(1)[A] = � i

2
log det( /D

2

+m2). (16.7)

Hint: Use the fact that the operator i /D � m is hermitian. For Hermitian O, it is known
that log detO = log[det(O†O)]/2.

To simplify the problem, we use the proper-time representation of the effective action by expressing
the Logarithm as

logO = �
Z

1

0

ds

s
e�sO + const. (16.8)

(c) Demonstrate that the proper-time representation of Eq. (16.7) reads

�(1)[A] =
i

2

Z
1

0

ds

s
e�sm

2tr
⇣
e�s /D

2
⌘
. (16.9)

Computing the effective Lagrangian comes down to evaluating the trace of the operator U = e�iHs,
with the analogue of a Hamiltonian

H ⌘ /D
2

. (16.10)
This is why Eq. (16.8) is called proper-time representation: The operator D2 is the generator of
translations in ds2 = ⌘µ⌫dxµdx⌫ . Therefore, the operator U is a translation in proper time and s,
the Schwinger proper time, is the translation parameter.

(d) Show that
H = D2 +

e

2
Fµ⌫�

µ⌫ ⌘ Hkin +Hspin, (16.11)

where �µ⌫ = i[�µ, �⌫ ]/2, and Hkin and Hspin denote the kinetic term and the coupling of spin
to the electromagnetic field, respectively.

The purpose of this exercise is to compute the trace for Fµ⌫ =const. Then, the spin-interaction
Hamiltonian commutes with the kinetic term such that

tr
�
e�sH

�
= tr

�
e�sHkin

�
tr
�
e�sHspin

�
. (16.12)

(e) Show that
tr
�
e�

es
2
Fµ⌫�

µ⌫�
= 4 cos(esa) cosh(esb), (16.13)

where

a2 =
p
F2 + G2 � F , b2 =

p
F2 + G2 + F , (16.14)

where we defined G ⌘ Fµ⌫F̃ µ⌫/4, and the dual field strength F̃ µ⌫ = ✏µ⌫⇢�F⇢�/2. Inasmuch
as a = 0 if ~E = 0 and b = 0 if ~B = 0, we can understand a to largely measure electric
contributions to the field strength, while b largely measures the magnetic ones.
Hints:



• Hspin is position independent, so what do we have to trace over?
• On the way, derive that (F�)2 = 8(F + i�5G). You can use the fact that

{�µ⌫ , �⇢�} = 2
�
gµ⇢g⌫� � g⌫⇢gµ� + i�5✏µ⌫⇢�

�
, (16.15)

and that (�5)2 = 1 and tr�5 = 0.

• The result of the trace has to be Lorentz invariant. Are there any Lorentz invariants
which contain odd powers in Fµ⌫?

Time for the last step. The trace of Hkin is best computed in Euclidean signature and afterwards
analytically continued back. This amounts to the transformation t ! �ix0, @t ! i@0. Thus, we
transform

D2 = ⌘µ⌫DµD⌫ ! ��ABDADB ⌘ �(DA)
2, (16.16)

where indices A,B are four-dimensional Euclidean indices. Note that raising and lowering of
indices is not required in Euclidean signature

(f) Show that the operator Hkin can be split into two commuting operators Hkin,a and Hkin,b by
an orthogonal transformation such that

tr
�
e�sHkin

�
= tr

�
e�sHkin,a

�
tr
�
e�sHkin,b

�
. (16.17)

From here on, we will treat these two Hamiltonians jointly by using the shorthand notation
I = a, b, to mean either of the two.
Hints:

• Antisymmetric matrices, like FAB, can be put into Darboux-form, i. e. into non-mixing
2-by-2 antisymmetric blocks, by an orthogonal transformation.

• Use without proof that in four dimensions and in Euclidean signature, the matrix
Fµ⇢F ⇢⌫ has the eigenvalues �a2 and �b2.

• If FAB =const, we can express the gauge field in a Landau-type gauge (show that!),
where

A = ax0dx1 + bx2dx3. (16.18)

.

An operator trace formally amounts to a sum over all eigenvalues of an operator, including the
multiplicity if the operator has degenerate eigenstates, namely

tr
�
e�sHkin,I

�
=
X

n

MI,ne
�sEI,n , (16.19)

where the EI,n are the eigenvalues of Hkin,I , and MI,n is the multiplicity of eigenstate |EI,ni (recall
that I = a, b) and n can collectively stand for different quantum numbers. Note, though, that
operators can have continuous spectra.

(g) Compute the eigenvalues of Hkin,I .

Hint: You can reduce the problem to that of a one-dimensional quantum harmonic oscillator.



(h) There is something fishy going on with these eigenvalues. What is the multiplicity?

Don’t despair! We have seen this kind of infinity before. Recall that we want to obtain the
effective Lagrangian – not the effective action. Let us, for the moment, put our theory into a box.
What we found is that the multiplicity scales with the side length of that box.
The number of allowed values of k provides the multiplicity but k also shifts the centre of motion
of the harmonic oscillator. Put the two two-dimensional systems into quadratic boxes of side
length L positioned such that the edges are at (x0, x1) = (0, 0) and (x0, x1) = (La, La) as well as
(x2, x3) = (0, 0) and (x2, x3) = (Lb, Lb), with periodic boundary conditions. As a result, the whole
theory is confined to a hypercube of box length L

(i) Estimate the number of states at fixed n, i. e. MI,n. by requiring that the centre of motion
for allowed k has to be inside the box. You should obtain

MI,n =
eIL2

2⇡
. (16.20)

This appears to be sleight of hand, but is actually exact in the limit L ! 1 that we will take
in the end. Why? Hint: To answer the "why"-question, consider that  ̄ is the eigenfunction
of the one-dimensional harmonic-oscillator Hamiltonian with shifted centre of motion.

(j) Show that

tr
�
e�sHkin

�
= VE

e2ab

(4⇡)2 sinh(esa) sinh(esb)
, (16.21)

where VE = L4 is the volume of the hypercube – the E here stands for Euclidean signature.
Wick rotate back to Lorentzian signature, and provide the resulting effective Lagrangian

Le↵ = Lcl �
e2ab

8⇡2

Z
1

0

ds

s
e�sm

2

cot (esa) coth (esb), (16.22)

where Lcl = �F .

Hint: Electric and magnetic fields behave differently under Wick rotation, namely ~EE = i ~EL

but ~BE = ~BL, where E stands for Euclidean and L for Lorentzian signature. How does the
volume change under Wick rotation?

(k) The integral in Eq. (16.22) is divergent for s ! 0, i. e. in the UV. Renormalize it by
subtracting solely the divergent part, i. e. do minimal subtraction. You should obtain

Le↵,ren =Lcl �
1

8⇡2

Z
1

0

ds

s3
e�sm

2

✓
e2s2ab cot (esa) coth (esb)� 1� e2s2(b2 � a2)

3

◆
. (16.23)

(l) Time for physics: Before we tackle the full integral, let’s do a simplification. Consider
only magnetic fields so that G = 0 and F > 0. Expand in F inside the integral and compute
the lowest-order contribution, namely

L(1)

e↵
|G=0,F>0 =

2

45⇡2

e4

m4
F2. (16.24)

Why and in which regime can we expand inside the integral? Have a closer look at the
resulting term: What kind of interaction did we get, i. e. what does backreaction do to the
background fields? What would you expect at higher orders in the expansion? What does
this mean for gravity?



The integral Eq. (16.23) covers the whole positive real line, where the integrand has an infinite
number of poles. Thus it requires some work to be well-defined. Call the integrand

f(s) =
e�sm

2

s3

✓
e2s2ab cot (esa) coth (esb)� 1� e2s2(b2 � a2)

3

◆
. (16.25)

We can render the integral well defined by shifting the poles into the complex plane, i. e. by
considering s ! s+ i✏ and computing

Z
1

0

dsf(s+ i✏), (16.26)

understood as a contour integral.

(m) Compute the imaginary part of the effective Lagrangian. You should obtain

ImLe↵ = �e2ab

8⇡

1X

j=1

e�
j⇡m2

ae coth j⇡b

a

j⇡
. (16.27)

Hint: The integrand is such that f̄(z) = f(z̄) for complex z, so the integral you have to
evaluate is

Im
Z

1

0

dsf(s) =
1

2i

Z
1

0

ds (f(s+ i✏)� f(s� i✏)) . (16.28)

This combined integral can be solved with the residue theorem.
Think before reading on: What could it mean that the imaginary part of the effective
action is non-zero?

(n) Consider the time evolution of the vacuum. If we treat the electromagnetic field as a classical
background, the amplitude describing vacuum being unchanged is given by the partition
function

h0in|0outi =
Z

D ̄D eiSQED . (16.29)

How does the probability of the vacuum staying the vacuum relate to the effective action?
What does it mean if that probability is smaller than one? What does the quantity

� =
2Im�[A]

V
= 2ImLe↵ (16.30)

measure?
Hint: Revisit the motivation at the top of the sheet.

(a) Treating the gauge field as an external field, we can write

Z =

Z
DAeiScl

✓Z
D ̄D ei

R
x  ̄(i

/D�m) 

◆
, (16.31)

with the classical (i. e. tree-level) action Scl = �
R
x
Fµ⌫F µ⌫/4. The involved integral is Gaussian and can

be solved explicitly, yielding
Z

D ̄D ei
R
x  ̄(i

/D�m) = N det(i /D �m), (16.32)



where we introduced some (infinite) normalization constant N . Thus, the effective action satisfies

ei�[A] = eiSclN det(i /D �m). (16.33)

Thus, we obtain for the effective action

�[A] = Scl � i log det(i /D �m)� i logN . (16.34)

Neglecting the infinite constant N – constants, even if they are infinite, are irrelevant to the effective
action in the absence of gravity –, we obtain the one-loop correction

�(1)[A] = �[A]� Scl = �i log det(i /D �m). (16.35)

(b) As the operator i /D �m is hermitian, we can re-express the logarithm of its determinant as the
sum of itself and its hermitian conjugate, namely

log det(i /D �m) =
1

2

⇥
log det(i /D �m) + log det(�i /D �m)

⇤
, (16.36)

=
log[det(i /D �m) det(�i /D �m)]

2
, (16.37)

=
log det[(i /D �m)(�i /D �m)]

2
, (16.38)

=
log det( /D

2

+m2)

2
. (16.39)

Thus, we obtain
�(1)[A] = � i

2
log det( /D

2

+m2). (16.40)

(c) Using the fact that for any operator log detO = tr logO, we can rewrite

�(1)[A] =� i

2
tr log( /D2

+m2), (16.41)

=
i

2
tr
Z

1

0

ds

s
e�s( /D

2
+m

2
) + const, (16.42)

=
i

2

Z
1

0

ds

s
e�sm

2tr
⇣
e�s /D

2
⌘
+ const. (16.43)

(d) We compute directly

Hspin =�µ�⌫DµD⌫ , (16.44)
=(⌘µ⌫ � i�µ⌫)DµD⌫ , (16.45)
=D2 � i�µ⌫D[µD⌫], (16.46)

=D2 � i

2
�µ⌫ [Dµ, D⌫ ], (16.47)

=D2 +
e

2
�µ⌫Fµ⌫ , (16.48)

where we used the anticommutation relations of the �-matrices, that �µ⌫ is antisymmetric in its indices,
and that Fµ⌫ ⌘ [Dµ, D⌫ ]/ie by definition.

(e) The trace that we have to compute is solely in spinor space. First, we expand

tr
�
e�

es
2
Fµ⌫�

µ⌫�
=

1X

n=0

�
�es

2

�n

n!
tr [(F�)n] . (16.49)



As the resulting expression is local and Lorentz invariant, it cannot depend on odd powers of the field
strength – a Lorentz invariant, local operator of odd power in field strength does not exist. Therefore,
tr[(F�)2n+1] = 0 for integer n. As a result, we can write

tr
�
e�

es
2
Fµ⌫�

µ⌫�
=

1X

n=0

�
�es

2

�2n

(2n)!
tr
⇥
(F�)2n

⇤
. (16.50)

Next, let’s compute (F�)2, which we can express as

(F�)2 =Fµ⌫F⇢��
µ⌫�⇢�, (16.51)

=
1

2
Fµ⌫F⇢�{�µ⌫ , �⇢�}, (16.52)

=2Fµ⌫F
µ⌫ + i�5✏µ⌫⇢�Fµ⌫F⇢�, (16.53)

=8
�
F + i�5G

�
. (16.54)

Thus, the kinds of traces, we have to take are

tr[(F�)2n] =8ntr[
�
F + i�5G

�n
], (16.55)

=8n
nX

m=0

✓
n

m

◆
tr
⇥
Fn�m(i�5G)m

⇤
. (16.56)

Now we use the hints on �5 to arrive at

tr[(F�)2n] =8n
n/2X

m=0

✓
n

2m

◆⇥
Fn�2m(iG)2m

⇤
tr[14⇥4]. (16.57)

This is a binomial sum where all the odd powers of iG have been projected out. Thus, we obtain

tr[(F�)2n] =
tr[14⇥4]

2
8n [(F + iG)n + (F � iG)n] . (16.58)

Thus, with tr[14⇥4] = 4 the whole sum becomes

tr
�
e�

es
2
Fµ⌫�

µ⌫�
=2

1X

n=0

⇣
�

p
8es

2

⌘2n

(2n)!
[(F + iG)n + (F � iG)n] , (16.59)

=2
h
cosh

⇣es
2

p
8(F + iG)

⌘
+ cosh

⇣es
2

p
8(F � iG)

⌘i
. (16.60)

Using the definitions of a and b, we obtain

p
F ± iG =

1p
2
(ia⌥ b) , (16.61)

such that

tr
�
e�

es
2
Fµ⌫�

µ⌫�
=2 [cos (es(a+ ib)) + cos (es(a� ib))] , (16.62)
=4 cos(esa) cosh(esb), (16.63)

where we used a trigonometric addition formula in the last equality.



(f) FAB is an antisymmetric matrix also in Euclidean signature. Any antisymmetric 2n-by-2n matrix
can be brought into block diagonal form by an orthogonal transformation, where the n blocks are
themselves 2-by-2 matrices. This block-diagonalization amounts to diagonalizing the square of the
antisymmetric matrix. Then, nontrivial entries of the resulting 2-by-2 blocks are the eigenvalues of that
square of the antisymmetric matrix.

As the background is four-dimensional Euclidean space, i. e. symmetric under O(4)-transformations
aka 4D rotations, we are allowed to compute eigenvalues in such a frame. Then, the field strength splits
the tensor into electric and magnetic fields. The 2-by-2 blocks are characterized by the eigenvalues of
FABFBC , namely �a2 and �b2 (see hint). Consequently, we can express the field strength as

FAB =

0

BB@

0 a 0 0
�a 0 0 0
0 0 0 b
0 0 �b 0

1

CCA . (16.64)

Indeed, if we choose the Landau-type gauge given in Eq. (16.18), we obtain this form of the field strength
from

FAB = @AAB � @BAA. (16.65)

Thus, after the orthogonal transformation and in Landau-type gauge, the operator Hkin reads

Hkin = Hkin,a +Hkin,b, (16.66)

where

Hkin,a =(�i@0)
2 + (�i@1 + eax0)

2 , (16.67)
Hkin,b =(�i@2)

2 + (�i@3 + ebx2)
2 . (16.68)

As these two Hamiltonians commute with each other, we can trace over them independently and split
their appearance in the exponent such that

tr
�
e�sHkin

�
= tr

�
e�s(Hkin,A+Hkin,B)

�
= tr

�
e�sHkin,A

�
tr
�
e�sHkin,B

�
. (16.69)

(g) Each Hkin,I (hereafter I = a, b) describes a Landau-level system in Landau gauge (i. e. charged
particle in a constant background magnetic field). Those depend on x1 and x3 only through derivatives.
Thus, we can express the eigenfunctions of the Hamiltonians as

 a(x0, x1) = eikax1 ̄a(x0),  b(x2, x3) = eikbx3 ̄b(x2), (16.70)

with the continuous quantum numbers kI , and where the  I are defined such that HI I = EI I . As a
result, the Hamiltonians become

Hkin,a ̄a =
⇥
(�i@0)

2 + (ka + eax0)
2
⇤
 ̄a, (16.71)

Hkin,b ̄b =
⇥
(�i@2)

2 + (kb + ebx2)
2
⇤
 ̄b. (16.72)

These two Hamiltonians describe harmonic oscillators whose centre of motion is shifted with respect
to the origin by an amount which depends on the quantum number k. This shift cannot be translated
away, because we cannot make sense of coordinates which depend on the state of a system, namely
the value of k. For the spectrum of the Hamiltonian, the position of the centre of motion is irrelevant,
though. To get the spectrum in the correct units, let us define dimensionless coordinates ya =

p
eax0

and yb =
p
ebx2 to bring the Hamiltonians into canonical form (recall I = a, b)

Hkin,I ̄I =eI
⇥
(�i@yI )

2 + (yI � yI,c)
2
⇤
 ̄I , (16.73)



where yI,c = �kI/
p
eI. As a result, we can read off the eigenvalues as the eigenvalues of a one-dimensional

harmonic oscillator, namely

Ekin,I,nI = 2eI

✓
nI +

1

2

◆
. (16.74)

(h) The problem is two-dimensional, but there is only one quantum number in the eigenvalues. The
other quantum number, k, only appears in the position of the centre of motion. Thus, the multiplicity
is infinite.

(i) In a box of length L the eigenvalues of the operators �i@1 and �i@3 are quantized as

kI =
2⇡mI

L
, (16.75)

where mI is a new discrete quantum number,i. e. a (possibly negative) integer. That’s just the free-
particle-in-a-box problem we all know and love/hate. The dimensionful position of the centre of motion
is

xI,c =
yI,cp
eI

= �kI
eI

= �2⇡mI

eIL
. (16.76)

To not shift the centre out of the box, mI has to satisfy

0  xI,c = �2⇡mI

eIL
 L. (16.77)

Thus, we have

� eIL2

2⇡
 mI  0. (16.78)

As mI is an integer, we can have

MI,n =
eIL2

2⇡
+O(1) (16.79)

states in the box in any level n. In the limit L ! 1, we can neglect the order-one contribution. Thus,
in the box we obtain the multiplicity

MI,n =
eIL2

2⇡
, (16.80)

which is independent of n.
Why is this an accurate state counting when L ! 1? Harmonic-oscillator eigenstates always contain

a Gaussian

 ̄I / e�
(yI�yI,c)

2

2 = e�
(x1,3�xI,c)

2

2eI , (16.81)

where here the notation x1,3 means that x1,3 = x1 if I = a and x3 if I = b. Thus, the standard deviation
of the states in comparison to the size of the box gets smaller and smaller with increasing L as

�x1,3

L
=

p
eI

L
, (16.82)

i. e. they are extremely sharply peaked for large L. We can safely count a state as allowed if the boundary
loss is negligible, i. e. if Z

x1,3 /2[0,L]

| ̄|2  ✏ (16.83)



for some small fixed number ✏. We can safely count them as not allowed if they are positioned almost
exclusively outside of the box, i. e. if

Z

x1,3 /2[0,L]

| ̄|2 � 1� ✏. (16.84)

The only states that we cannot be sure about are those which satisfy neither of these two inequalities.
But as the states are sharply peaked for large L (i. e. their standard deviation is independent of L),
however small the value of ✏ is one chooses to work with, the number of states we are not sure about
always scales as O(1). As we already discussed above, the multiplicity given in Eq. (16.79) goes like
MI,n / L2. Thus, order-one corrections are negligible in the limit L ! 1, and the number density we
computed is exact.

(j) We have to sum the eigenvalues, i. e.

tr
�
e�sHkin,I

�
=

1X

n=0

MI,ne
�sEn,I , (16.85)

=
eIL2

2⇡

1X

n=0

e�2esI(n+ 1

2
), (16.86)

=
eIL2

2⇡
e�esI

1X

n=0

e�2esIn, (16.87)

=
eIL2

2⇡

eesI

e2esI � 1
, (16.88)

=
eIL2

4⇡ sinh(esI)
. (16.89)

Thus, in total we obtain

tr
�
e�sHkin

�
=tr

�
e�sHkin,a

�
tr
�
e�sHkin,b

�
, (16.90)

=
e2abL4

(4⇡)2 sinh(esa) sinh(esb)
(16.91)

=VE

e2ab

(4⇡)2 sinh(esa) sinh(esb)
. (16.92)

As the hint together with Eq. (16.64) indicates, Wick rotation shifts a ! ia and b ! b. The volume has
to be understood as a volume integral

VE =

Z
dx0d~x = i

Z
dtd~x = iV. (16.93)

The effective Lagrangian then reads

Le↵ = lim
V!1

✓
Scl +

�(1)[A]

V

◆
, (16.94)

=Lcl +
i

2V

Z
1

0

ds

s
tr
�
e�

es
2
Fµ⌫�

µ⌫� tr
�
e�sHkin

�
, (16.95)

=Lcl �
e2ab

8⇡2

Z
1

0

ds

s
e�sm

2

cot (esa) coth (esb). (16.96)



(k) For small s, the divergent contributions to the integrand of Eq. (16.22) are

e�sm
2

s
cot (esa) coth (esb) ' 1

e2ab
e�sm

2
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Thus, we can remove the divergences by subtracting off the divergent terms such that
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(l) If G = 0 and F > 0, we immediately obtain a = 0, b = 2F . Thus, the effective Lagrangian
becomes
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Expanding in F to lowest order, we obtain

L(1)

e↵
|G=0,F>0 =

2

45⇡2
e4F2
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e�m
2
ssds, (16.100)

=
2

45⇡2

e4F2

m4
. (16.101)

Why and in which regime were we allowed to expand inside the integral? Besides the
dependence of the field strength, the integrand contains a factor e�sm

2

, which suppresses large-s con-
tributions to the integral. The expansion is fine, as long as the part of the domain where it does not
converge is within this suppressed regime. Thus, the expansion is fine as long as

e2F
m2

⌧ 1. (16.102)

What kind of interaction did we get? Recall that �F is the classical QED Lagrangian. The
new interaction term, then, contains four photons. Thus, it is a photon-photon interaction, which is
suppressed by the mass of the electron and the dimensionless strength of the photon-electron coupling
(e). This is exactly what one would expect from a theory where we integrated out a particle that
mediates interactions. In this case, we can see that the photon-photon interaction comes from shrinking
down a box diagram with internal fermion loop to a point.

What would we expect at higher order in the expansion? The expansion is in eF/m2, so
we expect higher- and higher-order contributions introducing many-photon self interactions.

What does this mean for gravity? The analogous effect should also apply to gravity, where
integrating out other fields, we obtain higher-curvature corrections to the gravitational effective action,
which are suppressed by powers of pg/m, where g = µ2G is the dimensionless Newton coupling and µ
is a characteristic energy scale, at which we probe the theory. We have to make this detour because G,
in contrast to e, is dimensionful. Thus, if we probe at energies smaller than m (which we have to to
expand as we did above), we can say that we have a suppression 

p
Gm = m/mPl. The first kind of

contribution to the effective, we expect to arise from backreaction of particles of mass m on the geometry
is of the form ✓

m

mPl

◆2 �
↵R2 + �Rµ⌫R

µ⌫
�
, (16.103)

and all of this without quantum gravity being involved!
(m) In Eq. (16.28), we subtract the integral with the poles shifted above the real axis from one with

the poles shifted below the real axis. This expression can be interpreted as a contour integral where the



contour is a curve going from s = i✏ to s = 1 + i✏, down to s = 1 � i✏, then back to s = �i✏, and
up to s = i✏. In short, the contour is a rectangle in the complex plane encircling the poles on the real
axis. This works because the integrand goes to zero at infinity, and so the integral from s = 1 + i✏ to
s = 1� i✏ vanishes in the limit ✏ ! 0, as does the integral from �i✏ to ✏. Thus, the resulting contour
encircles all poles of f on the real line, such that the imaginary part of the effective action is given by
a sum over the residues of all poles

ImLe↵ = � 1

8⇡

X

j

Res(f, sj), (16.104)

where sj are the poles of f(s). The cotangent has poles wherever its argument equals an integer multiple
of ⇡, so sj = j⇡/ea. Thus, we obtain the result

ImLe↵ = �e2ab

8⇡

1X

j=1
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ae coth j⇡b

a

j⇡
. (16.105)

As the hyperbolic cotangent asymptotes to one for large arguments, single elements of the sum decay
exponentially for large j. Thus, the sum is convergent.

(n) Using Eqs. (16.1) and (16.5), we have

Z =

Z
DAh0in|0outi =

Z
DAei�[A]. (16.106)

Thus, the partition function describing the vacuum-vacuum amplitude reads

h0in|0outi = ei�[A] = eiRe�[A]e�Im�[A]. (16.107)

If we now compute the probability of the vacuum remaining the vacuum, we obtain

|h0in|0outi|2 = e�2Im�[A] = e�2V ImLe↵ = e��V . (16.108)

Thus, the vacuum changes into a state which is not the vacuum with a probability 1�e��V . It decays, and
� is the decay rate per unit volume. The relevant energy scale at which this happens is ⇠ m. Considering
Eq. (16.27), we find that if the background electric field is strong enough such that ea/m > 1, the
probability of decay is non-negligible. This is the famous Schwinger particle creation in strong electric
backgrounds. Sure enough, this is an enormous electric field, but it is a prediction of QED. Does this
remind you of something? Right, particles can also be created by gravitational fields. Indeed, the kind
of Bogolyubov-coefficient computations we have done in the past can also be done for the Schwinger
effect, exactly as they can be for gravitational backgrounds.


